Risk Assessment for VRF Working Group for Risk Assessment Lower Flammability refrigerant # Introduction - Target is to make a proposal for safety measures which can achieve tolerable ignition risk for VRF with lower flammability refrigerants such as R32. - Risk factors are identified to be a large charge amount and some severe installation cases in which flammable space appears easily. - Ignition risk is evaluated using measurement results of leak rate and CFD results to calculate size and duration of flammable space. #### Conclusion - In indoor operation, smoking with oil lighter by overtime worker in office at night after ventilation stops makes a non-tolerable risk. Shut-off valve, mechanical ventilation etc. can reduce risk to tolerable level. - In outdoor operation, boiler ignition near outdoor unit in semiunderground makes a non-tolerable risk. Some measures to exhaust the leaked refrigerant can reduce risk to tolerable level. - Safety measures are summarized in safety guidelines of JRAIA. ### System Large charge amount and many types of units. | Cooling capacity | 14.0 – 168 kW | |----------------------|--| | Refrigerant charge | 5 – 104 kg (R410A) | | Operation | Indoor units, max 64units, can be operated individually | | Type of indoor unit | Ceiling mounted cassette Ceiling-concealed duct type Ceiling-suspended type Wall mounted type Floor mounted type | | Type of outdoor unit | Heat Pump Heat Recovery Water cooled unit | # Typical risk case Both of normal and severe cases are evaluated. *1) Air flow rate is assumed to be adequate. #### R32 charge amount : G [kg] # Leak rate and probability Measured leak rate and probability based on service data. | | | Slow | Rapid | Burst | Ev | ridence | |-------------------------------|---------|--------------------------------|-----------------------------|----------------------------|----|---------| | Leak rate [kg/h] | | < 1 | 1 - 10 | 10 - 75 | | a, b | | Cause of leakage | | Pin-hole
/Corrosion of pipe | Corrosion of heat exchanger | Breaking of pipe leakage h | | | | Probability [ppm/(unit·year)] | indoor | 345 | 5 | None (no compressor) | | N x 10 | | | outdoor | 6130 | 1340 | 134 (with compressor) | С | N x 100 | ### **c**. Number of servicing report indicating rapid leak | 2010, Mar | nufacturer | [number/year] | | | |------------------|-------------|----------------|---------------|--------------| | unit | White smoke | Burnt
smell | Holes in pipe | N
(total) | | Indoor | 0 | 1 | 0 | 1 | | Outdoor | 1 | 3 | 3 | 7 | # Flammable region - V: Mean volume size of flammable region [m³], (ratio to all volume) [%] - T: Duration of flammable region [min] - *1) Air flow rate is assumed to be adequate. *2) Hihara et al., Progress at the University of Tokyo, JSREA, Progress report, 2013, pp.16 # Results of risk assessments In severe cases, the ignition risks exceed tolerable risk. | | | | | not tolera | ble tolera | ble [time/(unit•year)] | |------|----------------------------------|--|------------------------|--|---|--| | | Normal case | | | Sev | vere cas | e | | In- | Life stage | 12 | Life stage | without
measure | 12 | with
measure | | door | Operation Installation Repairing | 3.5 x 10 ⁻¹²
1.9 x 10 ⁻⁹
8.7 x 10 ⁻¹¹ | Operation | 7.6 x 10 ⁻⁹ | 3.5 x 10 ⁻¹²
1.5 x 10 ⁻¹⁰
7.6 x 10 ⁻¹⁰ | Ventillation Shut off valve Safety alarm | | | Disposal | 2.9 x 10 ⁻¹⁴ | | | | :41 | | | | | | without
measure | | with
measure | | Out- | Operation Installation | 1.9 x 10 ⁻¹¹
1.9 x 10 ⁻⁹ | Operation Installation | | 2.5 x 10 ⁻¹³
1.9 x 10 ⁻⁶ | Ventillation Carring of portable | | door | Repairing
Disposal | 1.4 x 10 ⁻⁹
2.4 x 10 ⁻¹⁰ | Repairing
Disposal | 3.6 x 10 ⁻⁷
4.2 x 10 ⁻⁶ | 2.1 x 10 ⁻⁶
6.1 x 10 ⁻⁶ | leak detector, and education | | | Storage | 7.8 x 10 ⁻¹⁷ ~ 1.8 x | | | | Refrigerant : R32 | # Safety measures In severe cases, each safety measures are defined. These measures are effective also for R1234yf & ze in high moisture condition. | | Installation case | Safety measures Choose one of measures shown below | |--------------|-------------------------------|---| | In-
door | Other than floor mounted type | A) Ref. charge M ≤ 1/4 x LFL x A x height_of_leak_position B) Mechanical ventilation with adequate air flow rate C) Shut-off valve | | | Floor mounted
type | A) Ref. charge M ≤ 1/4 x LFL x A x reaching_height_with_air circulation B) Mechanical ventilation with adequate air flow rate C) Shut-off valve | | Out-
door | Semi-
underground | A) Ref. charge M \leq 1/2 x LFL x A x depth
B) Mechanical ventilation
C) Air circulation | | | Machinery
room | A) Mechanical ventilation operated at all times with adequate air flow rate | #### Documentation - JRAIA: VRF Sub working, Risk Assessment for VRF System, 2015 Final report, JSREA, 2016 - JRAIA: VRF Sub working, Risk assessment for VRF system with mildly flammable refrigerants, JSREA, Refrigeration, 2016/5 - JRAIA, JRA GL-16:2016, Guideline of design construction for ensuring safety against refrigerant leakage from commercial air conditioners using lower flammability (A2L) refrigerants - JRAIA, JRA 4070:2016, Requirements for ensuring safety against refrigerant leakage from commercial air conditioners using lower flammability (A2L) refrigerants