

Risk Assessment for Chillers

Working Group for Risk Assessment Lower Flammability refrigerant

Conclusion Introduction

[Subject system] water-cooled chillers and air-cooled heat pumps [Refrigerants (A2L)] R32, R1234yf, R1234ze(E)

[Risk assessment procedure]

- 1. Setup of an object product
- 2. Analysis of risks
- 3. Calculation of accident probability
- 4. Planning of safety measures
- 5. Establishment of the guideline

With ventilation, the lower flammable refrigerants can be safety used for chillers

[1/(unit year)] Table 1 Probability of accidental fire

With ventilation	Without ventilation
2 20 X 10-12	1 22 X 10-4

Installation System

*single refrigeration circuit

Water-cooled chillers

Air-cooled heat pumps

Water-cooled chiller model (machinery room)

Air-cooled heat pump model (outdoor)

Occurrence of refrigerant leakage

Table 3 Probability of the occurrence of refrigerant leakage [case/(unit year)]

2004-2011FY	Water-cooled Chiller	Air-cooled heat pump	Centrifugal chiller
Burst leakage	5.83 X 10 ⁻⁶	1.35 X 10 ⁻⁵	0
Rapid leakage	1.07 X 10 ⁻⁴	1.87 X 10 ⁻⁴	0
Slow leakage	1.64 X 10 ⁻³	2.21 X 10 ⁻³	7.09 X 10 ⁻³

Flammable region

The probability of existence of a flammable space

=the time-dependent volume of the flammable space [m³ min] /(target space [m³] X 8760 [h] X 60 [min])

Table 4 Probability of existence of a flammable space [1/year]				
Life Stage (LS)	Burst leakage	Rapid leakage	Slow leakage	
Logistics	2.64 X 10 ⁻¹⁰	5.46 X 10 ⁻⁷	0	
Installation [carry-in]	7.84 X 10 ⁻⁸	8.26 X 10 ⁻⁶	0	
Installation [trial]	7.84 X 10 ⁻⁸	2.33 X 10 ⁻⁷	0	
Usage [machinery room]	2.64 X 10 ⁻¹⁰	5.46 X 10 ⁻⁷	0	
Usage [outdoor]	1.12 X 10 ⁻⁷	9.84 X 10 ⁻⁸	0	
Repair / Service	7.84 X 10 ⁻⁸	2.33 X 10 ⁻⁷	0	
Overhaul	7.84 X 10 ⁻⁸	2.33 X 10 ⁻⁷	0	
Disposal	7.84 X 10 ⁻⁸	8.26 X 10 ⁻⁶	0	

Probability of accidental fire Ignition source

[Spark]

- Electrical part inside equipment (solenoid switch with 5kVA or above)
- Metal spark (by forklift)

[Open flame]

- Match, Oil lighter (open fire once ignited)
- Burning appliance
 - -Electric radiant heater
 - -Gas water heater
 - -Gas cooking appliance

IODADIIILY	UI a	ccidenta		
			Table 5 F	Probability

Table 5 Probability of accidental fire [1/					[1/(unit year)]		
Target	LS		Without ventilation		With ventilation		
		LS ratio	Probability	Probability under user	Probability	Probability under user	
Supplier	Logistics	0.0517	4.28 X 10 ⁻⁶	_	1.51 X 10 ⁻¹³	_	
User	Installation [carry-in]	0.0517	4.66 X 10 ⁻⁶		2.39 X 10 ⁻¹²		
	Installation [trial]	(0.0023)				3.89 X 10 ⁻¹²	
	Usage [machinery room]	0.2144	6.19 X 10 ⁻⁵		4.97 X 10 ⁻¹³		
	Usage [outdoor]	0.5002					
	Repair / Service	0.1207	6.51 X 10 ⁻⁵	6 F1 V 10-5		1.00 X 10 ⁻¹²	
	Overhaul	0.0098			1.00 X 10		
Supplier	Disposal	0.0517	1.72 X 10 ⁻⁵	_	9.22 X 10 ⁻¹²	_	

Technical requirements for safety

- 1. Ventilation:
 - -Mechanical ventilation is always indispensable
 - -In this risk assessment, it has proved that 4 times/h ventilation is required for the standard machinery room
 - -In JRA GL-15, the ventilation frequency, n=380/V, is adopted in accord with RA for other products in the machinery rooms
- 2. Refrigerant detector and refrigerant leakage alarm

(n: ventilation frequency [times/h], V: machinery room volume[m³])

Documentation

3. Open flame prohibition

Guideline of design construction for ensuring safety against refrigerant leakage from chiller using lower flammability (A2L) refrigerants JRA GL-15: 2016